organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(5-Fluoro-3-isopropylsulfanyl-7methyl-1-benzofuran-2-yl)acetic acid

Hong Dae Choi,^a Pil Ja Seo^a and Uk Lee^b*

^aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and ^bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea

Correspondence e-mail: uklee@pknu.ac.kr

Received 20 February 2012; accepted 24 February 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.051; wR factor = 0.155; data-to-parameter ratio = 19.4.

The title compound, C₁₄H₁₅FO₃S, was prepared by alkaline hydrolysis of ethyl 2-(5-fluoro-3-isopropylsulfanyl-7-methyl-1benzofuran-2-yl)acetate. In the crystal, molecules are linked via pairs of $O-H \cdots O$ hydrogen bonds, forming inversion dimers. These dimers are connected by weak $C-H \cdots O$ hydrogen bonds.

Related literature

For background information and the crystal structures of related compounds, see: Seo et al. (2011, 2012).

Experimental

Crystal data C14H15FO3S

 $M_r = 282.32$

Triclinic, PI	
a = 8.4365 (2) Å	
b = 9.2771 (2) Å	
c = 9.7956 (2) Å	
$\alpha = 91.404 \ (1)^{\circ}$	
$\beta = 91.2710 \ (1)^{\circ}$	
$\nu = 115.111 (1)^{\circ}$	

Data collection

Bruker SMART APEXII CCD	12921 measured reflections
diffractometer	3467 independent reflections
Absorption correction: multi-scan	2946 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2009)	$R_{\rm int} = 0.028$
$T_{\min} = 0.919, \ T_{\max} = 0.934$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	H atoms treated by a mixture of
$wR(F^2) = 0.155$	independent and constrained
S = 1.06	refinement
3467 reflections	$\Delta \rho_{\rm max} = 0.93 \ {\rm e} \ {\rm \AA}^{-3}$
179 parameters	$\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$

V = 693.55 (3) Å³

Mo $K\alpha$ radiation

 $0.35 \times 0.32 \times 0.28 \text{ mm}$

 $\mu = 0.25 \text{ mm}^{-1}$ T = 173 K

7 - 2

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	H···A	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O3 - H3O \cdots O2^{i} \\ C9 - H9B \cdots O3^{ii} \end{array}$	0.86 (4)	1.76 (4)	2.616 (2)	176 (4)
	0.98	2.56	3.534 (3)	171

Symmetry codes: (i) -x, -y, -z; (ii) x, y + 1, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2050).

References

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, 03112.

Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2012). Acta Cryst. E68, 058.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, o946 [doi:10.1107/S1600536812008240]

2-(5-Fluoro-3-isopropylsulfanyl-7-methyl-1-benzofuran-2-yl)acetic acid

Hong Dae Choi, Pil Ja Seo and Uk Lee

Comment

As a part of our continuing study of 2-(5-halo-3-isopropylsulfanyl-1-benzofuran-2-yl)acetic acid derivatives containing 5-fluoro (Seo *et al.*, 2011) and 5-bromo (Seo *et al.*, 2012) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.010(1) Å from the least-squares plane defined by the nine constituent atoms. In the crystal structure, the carboxyl groups are involved in intermolecular O–H…O hydrogen bonds (Fig. 2 & Table 1), which link the molecules into centrosymmetric dimers. These dimers are stuck by weak intermolecular C–H…O hydrogen bonds (Fig. 2 & Table 1).

Experimental

Ethyl 2-(5-fluoro-3-isopropylsulfanyl-7-methyl-1-benzofuran-2-yl)acetate (372 mg, 1.2 mmol) was added to a solution of potassium hydroxide (336 mg, 6 mmol) in water (10 ml) and methanol (10 ml), and the mixture was refluxed for 6h, then cooled. Water was added, and the solution was extracted with dichloromethane. The aqueous layer was acidified to pH=1 with concentrated hydrochloric acid and then extracted with chloroform. The organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (ethyl acetate) to afford the title compound as a colorless solid [yield 87%, m.p. 436-437 K; $R_f = 0.44$ (ethyl acetate)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in diisopropyl ether at room temperature.

Refinement

H atom in the carboxyl group is found in a different Fourier map and refined freely. The other H atoms of C atoms were positioned geometrically and refined using a riding model, with C-H = 0.95 Å for aryl, 1.0 Å for methine, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. $U_{iso}(H) = 1.2U_{eq}(C)$ for aryl, methine, and methylene, and $1.5U_{eq}(C)$ for methyl H atoms. The positions of methyl hydrogens were optimized rotationally. The split of C13 atom was ignored because the disordered ellipsoids also split into two.

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Figure 2

A view of the O–H···O and C–H···O interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x, - y, - z; (ii) x, y + 1, z; (iii) x, y - 1, z.]

Z = 2

F(000) = 296

 $\theta = 2.4 - 28.4^{\circ}$

 $\mu = 0.25 \text{ mm}^{-1}$

Block, colourless

 $0.35 \times 0.32 \times 0.28 \text{ mm}$

T = 173 K

 $D_{\rm x} = 1.352 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 5886 reflections

2-(5-Fluoro-3-isopropylsulfanyl-7-methyl-1-benzofuran-2-yl)acetic acid

Crystal data $C_{14}H_{15}FO_{3}S$ $M_{r} = 282.32$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.4365 (2) Å b = 9.2771 (2) Å c = 9.7956 (2) Å a = 91.404 (1)° $\beta = 91.2710$ (1)° $\gamma = 115.111$ (1)° V = 693.55 (3) Å³

Data collection

Bruker SMART APEXII CCD	12921 measured reflections
diffractometer	3467 independent reflections
Radiation source: rotating anode	2946 reflections with $I > 2\sigma(I)$
Graphite multilayer monochromator	$R_{\rm int} = 0.028$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\text{max}} = 28.4^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
φ and ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan	$k = -11 \rightarrow 12$
(SADABS; Bruker, 2009)	$l = -13 \rightarrow 13$
$T_{\min} = 0.919, \ T_{\max} = 0.934$	

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: difference Fourier map
H atoms treated by a mixture of independent
and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0853P)^2 + 0.3723P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.93 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.64151 (7)	0.31790 (6)	0.28518 (5)	0.03564 (17)
F1	0.78061 (17)	0.98655 (14)	0.35845 (16)	0.0503 (4)
O1	0.23013 (17)	0.40794 (15)	0.34150 (13)	0.0310 (3)
O2	0.1261 (3)	0.16845 (17)	0.07988 (16)	0.0552 (5)
O3	0.0331 (2)	-0.07438 (16)	0.15984 (16)	0.0434 (4)
H3O	-0.022 (5)	-0.102 (5)	0.082 (4)	0.097 (13)*
C1	0.4901 (2)	0.3980 (2)	0.30894 (17)	0.0273 (4)
C2	0.5220 (2)	0.5633 (2)	0.32776 (16)	0.0261 (3)
C3	0.6709 (2)	0.7080 (2)	0.33113 (19)	0.0309 (4)
Н3	0.7852	0.7141	0.3203	0.037*
C4	0.6403 (3)	0.8411 (2)	0.3512 (2)	0.0343 (4)
C5	0.4765 (3)	0.8394 (2)	0.3669 (2)	0.0348 (4)
Н5	0.4664	0.9371	0.3791	0.042*
C6	0.3272 (3)	0.6965 (2)	0.36477 (18)	0.0312 (4)
C7	0.3583 (2)	0.5618 (2)	0.34579 (17)	0.0273 (4)
C8	0.3153 (2)	0.3132 (2)	0.31893 (17)	0.0287 (4)
C9	0.1464 (3)	0.6865 (3)	0.3815 (2)	0.0426 (5)
H9A	0.0604	0.5752	0.3705	0.064*
H9B	0.1222	0.7497	0.3122	0.064*
H9C	0.1386	0.7283	0.4728	0.064*
C10	0.2049 (3)	0.1387 (2)	0.30994 (19)	0.0349 (4)
H10A	0.1139	0.1115	0.3792	0.042*
H10B	0.2789	0.0828	0.3322	0.042*
C11	0.1170 (3)	0.0792 (2)	0.17141 (19)	0.0317 (4)
C12	0.6510 (5)	0.3118 (4)	0.0971 (3)	0.0624 (8)
H12	0.5284	0.2565	0.0581	0.075*

supplementary materials

C13	0.7450 (8)	0.2152 (6)	0.0605 (5)	0.124 (2)
H13A	0.7367	0.1960	-0.0388	0.186*
H13B	0.6925	0.1132	0.1055	0.186*
H13C	0.8683	0.2722	0.0904	0.186*
C14	0.7333 (5)	0.4753 (4)	0.0408 (3)	0.0766 (10)
H14A	0.8535	0.5318	0.0783	0.115*
H14B	0.6652	0.5344	0.0663	0.115*
H14C	0.7351	0.4665	-0.0590	0.115*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0454 (3)	0.0356 (3)	0.0327 (3)	0.0233 (2)	0.0074 (2)	0.00516 (18)
F1	0.0421 (7)	0.0235 (6)	0.0731 (9)	0.0025 (5)	0.0028 (6)	-0.0043 (6)
01	0.0274 (6)	0.0274 (6)	0.0340 (7)	0.0077 (5)	-0.0037 (5)	0.0021 (5)
O2	0.0785 (12)	0.0260 (7)	0.0413 (8)	0.0041 (7)	-0.0244 (8)	0.0048 (6)
03	0.0606 (10)	0.0224 (6)	0.0362 (8)	0.0077 (6)	-0.0109 (7)	0.0002 (5)
C1	0.0329 (9)	0.0237 (8)	0.0232 (7)	0.0103 (7)	-0.0018 (6)	-0.0003 (6)
C2	0.0304 (9)	0.0243 (8)	0.0217 (7)	0.0101 (7)	-0.0009 (6)	-0.0001 (6)
C3	0.0278 (9)	0.0277 (8)	0.0334 (9)	0.0082 (7)	0.0014 (7)	-0.0006 (7)
C4	0.0365 (10)	0.0232 (8)	0.0354 (9)	0.0056 (7)	-0.0011 (7)	-0.0015 (7)
C5	0.0436 (11)	0.0269 (8)	0.0353 (9)	0.0164 (8)	0.0006 (8)	-0.0004 (7)
C6	0.0342 (10)	0.0329 (9)	0.0287 (8)	0.0164 (8)	-0.0014 (7)	0.0023 (7)
C7	0.0285 (8)	0.0261 (8)	0.0244 (8)	0.0091 (7)	-0.0034 (6)	0.0013 (6)
C8	0.0324 (9)	0.0243 (8)	0.0259 (8)	0.0088 (7)	-0.0038 (6)	0.0012 (6)
C9	0.0393 (11)	0.0434 (11)	0.0521 (12)	0.0240 (9)	0.0007 (9)	0.0072 (9)
C10	0.0392 (10)	0.0245 (8)	0.0326 (9)	0.0057 (7)	-0.0070 (8)	0.0034 (7)
C11	0.0328 (9)	0.0229 (8)	0.0332 (9)	0.0061 (7)	-0.0037 (7)	0.0015 (6)
C12	0.097 (2)	0.0646 (16)	0.0406 (12)	0.0479 (16)	0.0232 (13)	0.0050 (11)
C13	0.202 (6)	0.151 (4)	0.086 (3)	0.135 (5)	0.063 (3)	0.026 (3)
C14	0.116 (3)	0.076 (2)	0.0474 (15)	0.048 (2)	0.0261 (16)	0.0178 (14)

Geometric parameters (Å, °)

S1—C1	1.7464 (19)	С6—С9	1.502 (3)	
S1—C12	1.847 (3)	C8—C10	1.485 (2)	
F1—C4	1.365 (2)	С9—Н9А	0.9800	
O1—C8	1.368 (2)	С9—Н9В	0.9800	
O1—C7	1.376 (2)	С9—Н9С	0.9800	
O2—C11	1.217 (2)	C10-C11	1.506 (3)	
O3—C11	1.295 (2)	C10—H10A	0.9900	
O3—H3O	0.86 (4)	C10—H10B	0.9900	
C1—C8	1.352 (3)	C12—C13	1.469 (4)	
C1—C2	1.446 (2)	C12—C14	1.501 (4)	
С2—С7	1.390 (3)	C12—H12	1.0000	
С2—С3	1.395 (2)	C13—H13A	0.9800	
C3—C4	1.375 (3)	C13—H13B	0.9800	
С3—Н3	0.9500	C13—H13C	0.9800	
C4—C5	1.387 (3)	C14—H14A	0.9800	
C5—C6	1.387 (3)	C14—H14B	0.9800	

С5—Н5	0.9500	C14—H14C	0.9800
C6—C7	1.390 (3)		
C1—S1—C12	101.58 (11)	С6—С9—Н9С	109.5
C8—O1—C7	105.60 (14)	Н9А—С9—Н9С	109.5
С11—О3—НЗО	110 (3)	H9B—C9—H9C	109.5
C8—C1—C2	105.76 (16)	C8—C10—C11	113.50 (15)
C8—C1—S1	125.54 (14)	C8—C10—H10A	108.9
C2—C1—S1	128.66 (14)	C11—C10—H10A	108.9
C7—C2—C3	119.79 (16)	C8—C10—H10B	108.9
C7—C2—C1	105.53 (15)	C11—C10—H10B	108.9
C3—C2—C1	134.68 (17)	H10A—C10—H10B	107.7
C4—C3—C2	115.14 (17)	02—C11—O3	123.96 (17)
C4—C3—H3	122.4	02-C11-C10	122.48 (16)
С2—С3—Н3	122.4	O3-C11-C10	113.55 (16)
F1-C4-C3	118 24 (18)	C_{13} C_{12} C_{14}	112.60 (10)
F1 - C4 - C5	116.81 (17)	C_{13} C_{12} S_{1}	107.5(2)
C_{3} C_{4} C_{5}	124 94 (17)	C14-C12-S1	107.3(2) 112.2(2)
C4-C5-C6	120.63(17)	C_{13} C_{12} H_{12}	108.2
C4-C5-H5	119 7	C_{14} C_{12} H_{12}	108.2
С6—С5—Н5	119.7	S1-C12-H12	108.2
$C_{5} - C_{6} - C_{7}$	114 44 (17)	C_{12} C_{13} H_{13A}	100.2
$C_{5} - C_{6} - C_{9}$	123 24 (18)	C12 - C13 - H13R	109.5
C_{2}^{-}	123.24(18)	$H_{13} - C_{13} - H_{13} B$	109.5
$C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}$	122.52(18) 110.54(15)	C12_C13_H13C	109.5
01 - 07 - 02	124 41 (17)	$H_{13} = C_{13} = H_{13} C$	109.5
$C_2 = C_7 = C_6$	124.41(17) 125.04(17)	H13B C13 H13C	109.5
$C_2 = C_1 = C_0$	123.04(17) 112.56(15)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_1 = C_8 = C_{10}$	112.50(15) 130.05(18)	C12 - C14 - H14R	109.5
C1 = C8 = C10	116 40 (16)	$H_{14A} = C_{14} = H_{14B}$	109.5
$C_{1} = C_{1} = C_{10}$	100.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
C6 C0 H0P	109.5	H_{14} C_{14} H_{14} H_{14}	109.5
	109.5	$H_{A} - C_{I4} - H_{I4} C_{I4}$	109.5
пуА—Су—пув	109.5	П14Б—С14—П14С	109.5
C_{12} S_{1} C_{1} C_{2}	01.01.(10)	C^{2} C^{2} C^{2} C^{2} C^{6}	1.5(2)
$C_{12} = S_1 = C_1 = C_8$	$-01\ 00\ (18)$	C_{3} C_{2} C_{7} C_{6}	-17868(16)
$C_{12} = -5_{1} = -C_{1} = -C_{2}$	-0.86(10)	$C_1 = C_2 = C_1 = C_0$	170.08(10)
$C_{0} = C_{1} = C_{2} = C_{7}$	-0.80(19) -178(20(12))	$C_{3} = C_{0} = C_{1} = 0_{1}$	-0.6(2)
$S_1 = C_1 = C_2 = C_7$	-178.39(13)	$C_{2} = C_{2} = C_{1} = C_{1}$	-0.0(3)
$C_{0} - C_{1} - C_{2} - C_{3}$	1/0.94(19) 1/4(2)	$C_{3} = C_{0} = C_{7} = C_{2}$	-1.0(3)
S1 - C1 - C2 - C3	1.4(3)	$C_{2} = C_{1} = C_{2}$	1/9.04(10)
$C_{-}C_{2} - C_{3} - C_{4}$	-0.7(3)	$C_2 - C_1 - C_8 - O_1$	0.3(2)
$C_1 = C_2 = C_3 = C_4$	179.49 (16)	$S_1 = C_1 = C_2 = C_1 $	-170.22(17)
$C_2 = C_3 = C_4 = F_1$	1/0.00(10)	$C_2 - C_1 - C_8 - C_{10}$	-1/9.33(17)
$C_2 = C_3 = C_4 = C_5$	-0.4(3)	$SI = CI = C_0 = C_1 C_1$	-1.7(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1/8.20(1/)	$C_1 = 01 = C_0 = C_1$	0.13(19)
$C_{4} = C_{5} = C_{6} = C_{7}^{2}$	0.9(3)	$C_1 = C_2 = C_1 C_1 C_1 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2$	1/9.95 (14)
	-0.2(3)	$C_1 = C_0 = C_1 + C_1 + C_1 + C_2 $	-90.2 (2)
	1/9.80 (19)	$\bigcup_{i=1}^{n} \bigcup_{i=1}^{n} \bigcup_{i$	82.0 (2)
C8—O1—C/—C2	-0.71 (18)	C8—C10—C11—O2	-5.3 (3)

supplementary materials

C8—O1—C7—C6	178.95 (16)	C8-C10-C11-O3	174.37 (18)
C3—C2—C7—O1	-178.85 (15)	C1—S1—C12—C13	-168.1 (3)
C1—C2—C7—O1	0.98 (19)	C1—S1—C12—C14	67.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
O3—H3 <i>O</i> …O2 ⁱ	0.86 (4)	1.76 (4)	2.616 (2)	176 (4)
С9—Н9В…ОЗ ^{іі}	0.98	2.56	3.534 (3)	171

Symmetry codes: (i) –*x*, –*y*, –*z*; (ii) *x*, *y*+1, *z*.